

Final Fantasy IV Technical Documentation

Contents:

	Introduction
	Conventions

	Data Structures
	Events

	Character Records

	Graphics
	Field Sprites

	Title Screen

	Outdoor Maps

	Versions
	Japan

	Japan (Rev 1)

	USA

	USA Rev 1

	Japan (Easytype)

	ROM Map
	Bank $00

	Bank $14

Introduction

This project attempts to document the technical workings of Final Fantasy IV,
which was originally relased in the United States as Final Fantasy II. At this
time, the focus is on the US release Rev A (or 1.1). Eventually, however, the
goal is to document all SNES or SFC versions, and the differences among them.

The information in this documentation comes primarily from two sources:

	Analysis of the disassembled code from the ROM itself.

	Observation of how things operate using a debugger.

Some well-known trivial information may be included as well to the extent that
it is not contradicted by either of the two previous sources. In contrast,
anecdotes, statistical sampling, or other published technical documentation are
not used as sources, though they may be used for confirmation or indications of
areas that merit further research.

Ultimately, I want this to be the most accurate resource regarding the inner
workings of Final Fantasy IV. Incomplete information is acceptable, but
incorrect information is not. If you do find any errors, please contact
the author. Please be prepared to back up any
non-trivial corrections with either your own code analysis or other compelling
evidence.

Conventions

Numbers

Unless otherwise specified, all numbers are decimal. Hexadecimal numbers are
prefixed with a dollar sign: $. Binary numbers are prefixed with a percent
sign: %.

Bits within a byte (or double byte, etc.) are numbered starting from the least
significant bit, which is numbered zero. The highest bit in a byte, therefore,
is numbered 7. The remaining bits are numbered according to that pattern. The
correct value for a byte wherein a single bit is set can be determined by the
formula \(2^x\) where \(x\) is the bit number. (For example, \(2^0
= 1 = \$01\) and \(2^7 = 128 = \$80\).

Addresses

All addresses are given as if they were being accessed on the SNES system bus.
Full 24-bit addresses are given as $BB:XXXX where BB is the bank and XXXX is
the address within that bank.

When accessing an actual ROM image outside of an SNES system, these addresses
should be converted according to the following formula:

(bank * $10000) // 2 + (address - $8000)

If for whatever reason, the ROM is headered, an additional $200 bytes should
be added for the header.

For example, $12:8200 corresponds to $090200 in an unheadered ROM image and
$13:EF00 corresponds to $09EF00.

Unless otherwise specified, all addresses refer to USA Rev 1. This is important
when discussing changes between versions, where offsets have shifted.

Data Structures

This chapter details the various data structures used by the game.

Events

Caution

This section is a draft based on current reverse engineering work. Some of
the information may be inaccurate or incomplete.

The game uses a simple virtual machine for scripting event sequences. The data
discovered for this so far exists in bank 12 ($12:XXXX on the system bus).
There are 256 event numbers. $12:8000 to $12:8200 is a series of 256 2-byte
indexes. These indexes subsequently indicate the beginning of each event’s
script in the data array extending from $12:8200 to $12:EFFF. The event
commands have variable lengths depending on the nature of the command.

$FA: Play Song

	Bytes

	2

	Parameter 1

	Desired track number.

This instruction causes to play the song identified by the given track number.

$FE: Warp to Map

	Bytes

	?

	Parameter 1

	Target map ID.

	Parameter 2

	%DDXXXXXX where DD is the target direction and XXXXXX is the
target X coordinate.

	Parameter 3

	Target Y coordinate.

	Parameter 4

	%P??????? where P is the target map plane.

Map IDs from $00 to $FA act as expected and transport the player to that map.
Maps $FB to $FF have special behavior:

$FF: End Event

	Bytes

	1

This instruction ends the event. It automatically makes sure the visible player
field sprite corresponds with the active character.

Character Records

Character records are stored in two separate areas in RAM. The first set is
made up of five 64-byte records located at $7E1000. The second set of is five
128-byte records located at $7E2000. The second set of records is used
in-battle and is a strict superset of the first set. The individual bytes can
be interpreted as follows:

$00: Character Byte 1

	Bitmask

	%RL?CCCCC

	R

	Right-hand weapons

	L

	Left-hand weapons

	C

	Character ID

The lowest five bits define the character ID. Therefore, the game supports up
to \(2^5\) or 32 unique character IDs. One of these is reserved for
indicating an empty slot. Each instance of a character has its own ID. (For
example, Kain leaves the party and rejoins twice. All three instances of Kain
have a separate ID. The values used in game are as follows:

	ID

	Character

	$00

	<empty slot>

	$01

	Cecil (dark knight)

	$02

	Kain (until Mist)

	$03

	Rydia (child)

	$04

	Tellah (until Damcyan)

	$05

	Edward (until Leviatan)

	$06

	Rosa (until Fabul)

	$07

	Yang (until Leviatan)

	$08

	Palom

	$09

	Porom

	$0A

	Tellah (until Cecil becomes a Paladin)

	$0B

	Cecil (paladin)

	$0C

	Tellah (until Tower of Zot cutscene)

	$0D

	Yang (until Super Cannon)

	$0E

	Cid

	$0F

	Kain (until Sealed Cave)

	$10

	Rosa (final)

	$11

	Rydia (adult)

	$12

	Edge

	$13

	FuSoYa

	$14

	Kain (final)

	$15

	Golbez

	$16

	Anna

The two highest bits determine the character’s handedness. If the uppermost bit
is set, the character can equip weapons on their right hand, and if the second
highest bit is set, they can equip weapons on their left hand.

The remaining bit’s function is currently unknown.

$01: Character Byte 2

	Bitmask

	%B?L?SSSS

	B

	Back row

	L

	Long range

	S

	Sprite/Class

The lowest four bits determine the sprite and class of the character. These two
properties are inextricably tied together and are defined using one value. The
known values are as follows:

	ID

	Sprite

	Class

	$00

	Cecil (dark knight)

	DKnight

	$01

	Kain

	Dragoon

	$02

	Rydia (child)

	Caller

	$03

	Tellah

	Sage

	$04

	Edward

	Bard

	$05

	Rosa

	Wh.Wiz

	$06

	Yang

	Karate

	$07

	Palom

	Bl.Wiz

	$08

	Porom

	Wh.Wiz

	$09

	Cecil (paladin)

	Paladin

	$0A

	Cid

	Chief

	$0B

	Rydia (adult)

	Caller

	$0C

	Edge

	Ninja

	$0D

	FuSoYa

	Lunar

	$0E

	*Various

	<garbage>

	$0F

	*Golbez

	<garbage>

$0E appears to be garbage data and is not actually used in the game. The
portrait is that of a solid black pig, the overworld sprite is a mini and the
in-battle sprite is a green pig. $0F provides an in-battle sprite of Golbez,
but the rest of the data is not usefully defined.

Bit 5 is the so-called long range bit, which determines whether or not the
character is capable of performing long range attacks without having their
accuracy reduced. This bit is especially notable because the game has a bug
that results in this bit never being reset. In other words, once a character
equips a back row weapon (and the game is given an opportunity to recalculate
stats), the character will retain that status forever.

Bit 7 is the back row bit and is set when the character is in the back row and
unset when the character is in the front row. This does not affect the display
of party members and appears to be used only for calculations.

The functions of the remaining two bits are currently unknown.

$02: Level

	Bitmask

	%LLLLLLLL

	L

	Level

This is the character’s level.

$03-$06: Status

	Bitmask

	%SSSSSSSS %SSSSSSSS %SSSSSSSS %SSSSSSSS

	S

	Status effects

These bytes encode the following status effects:

	Byte

	Bit

	Hex

	Binary

	In-Game

	Description

	$03

	7

	$80

	%10000000

	Swoon

	Swoon/Death

	$03

	6

	$40

	%01000000

	Stone

	Stone

	$03

	5

	$20

	%00100000

	Toad

	Toad

	$03

	4

	$10

	%00010000

	Small

	Small/Mini

	$03

	3

	$08

	%00001000

	Pig

	Pig

	$03

	2

	$04

	%00000100

	Mute

	Mute/Silence

	$03

	1

	$02

	%00000010

	Darkness

	Darkness/Blindness

	$03

	0

	$01

	%00000001

	Poison

	Poison

	Byte

	Bit

	Hex

	Binary

	In-Game

	Description

	$04

	7

	$80

	%10000000

	Curse

	Curse

	$04

	6

	$40

	%01000000

	Float

	Float

	$04

	5

	$20

	%00100000

	Paralyze

	Paralysis

	$04

	4

	$10

	%00010000

	Sleep

	Sleep

	$04

	3

	$08

	%00001000

	Charm

	Charm/Confuse

	$04

	2

	$04

	%00000100

	Berserk

	Berserk

	$04

	1

	$02

	%00000010

	Petrify

	Gradual petrification (2/3)

	$04

	0

	$01

	%00000001

	D

	Gradual petrification (1/3)

	Byte

	Bit

	Hex

	Binary

	In-Game

	Description

	$05

	7

	$80

	%10000000

	D

	Magnetized

	$05

	6

	$40

	%01000000

	Stop

	Stop

	$05

	5

	$20

	%00100000

	
	<unknown>

	$05

	4

	$10

	%00010000

	
	<unknown>

	$05

	3

	$08

	%00001000

	
	<unknown>

	$05

	2

	$04

	%00000100

	
	<unknown>

	$05

	1

	$02

	%00000010

	
	<unknown>

	$05

	0

	$01

	%00000001

	Count

	Count/Doom

	Byte

	Bit

	Hex

	Binary

	In-Game

	Description

	$06

	7

	$80

	%10000000

	
	<unknown>

	$06

	6

	$40

	%01000000

	
	<unknown>

	$06

	5

	$20

	%00100000

	Wall

	Wall/Reflect

	$06

	4

	$10

	%00010000

	Barrier

	Barrier

	$06

	3

	$08

	%00001000

	
	Image (two hits)

	$06

	2

	$04

	%00000100

	
	Image (one hit)

	$06

	1

	$02

	%00000010

	
	<unknown>

	$06

	0

	$01

	%00000001

	
	HP Critical

$07-$08: Current HP

These two bytes contain the character’s current HP, encoded in low-endian
format. (In other words, the first byte is the low byte and the second byte is
the high byte.

$09-$0A: Maximum HP

These two bytes contain the chracter’s maximum HP, encoded in low-endian
format.

$0B-$0C: Current MP

These two bytes contain the character’s current MP, encoded in low-endian
format.

$0D-$0E: Maximum MP

These two bytes contain the character’s maximum MP, encoded in low-endian
format.

$0F: Base Strength

The character’s base strength.

$10: Base Agility

The character’s base agility.

$11: Base Vitality

The character’s base vitality.

$12: Base Wisdom

The character’s base wisdom.

$13: Base Will

The character’s base will.

$14: Strength

The character’s base strength plus any bonuses from their equipment. If the
value is $B6 or greater (essentially -74 to -1, as this is signed), the value
is replaced with 1. This almost sets up a lower bound for the stat at 1, but 0
itself is allowed to pass through.

The upper bound is set to 99.

$15: Agility

(calculated the same as strength)

$16: Vitality

(calculated the same as strength)

$17: Wisdom

(calculated the same as strength)

$18: Will

(calculated the same as strength)

$19: Elemental Attack

These are the elements associated with the character’s physical attack. It is
set as the union of the attack elements of their weapons.

$1A: Racial Attack

The character’s physical attack will do extra damage against the races
indicated in this variable. It is determined by the union of the race property
of each of their weapons.

$1B: Physical Attack Multiplier

This is calculated with the following formula:

strength // 8 + agility // 16 + 1

$1C: Physical Attack Accuracy

There are a number of ways this might be calculated, depending on what the
character has equipped:

	No Weapons

	50 + level // 4

	One Weapon or Bow+Arrow

	(weapon or bow accuracy) + level // 4

	Two Weapons

	(level // 4 + level // 4 + sum(weapon accuracies)) // 2

If only a bow or only an arrow is equipped, they are ignored.

This value is capped at 99.

$1D: Physical Attack Base

Like with accuracy, there are a few possibilities:

	Yang (specifically class is Karate)

	level * 2 + strength // 4 + 2

	Bow+Arrow

	bow_power // 2 + arrow_power + strength // 4

	No Weapon

	level // 4 + strength // 4

	One Weapon

	level // 4 + strength // 4 + weapon_power

	Two Weapons

	(level // 4 + strength // 4) * 2 + sum(weapon powers)

If the player has a bow and arrow equipped and the bow is in the primary hand,
then the value is modified as follows:

value = value - (value // 5)

If only a bow or only an arrow is equipped, it is treated as a single weapon
with a power of 1.

This value is capped at 255.

$1E-$1F: Physical Attack Status

This determines the status that physical attacks potentially carry. It is set
to the union of the status property of the character’s weapons.

$20: Elemental Weakness

This byte controls the elements the character is weak to. This is set by taking
the opposite of the elements they are resistant to. The only pairs of opposite
elements are fire/ice and holy/darkness. Lightning and the pseudo-elements do
not have opposites.

For example, if the character resists fire and holy, they will have a weakness
to ice and darkness.

$21: Elemental Strong Weakness

This byte determines which elements the character is strongly weak too. This
results in double the damage, versus a regular weakness. This value is set as
the opposite of any elemental immunities the character has.

This property is bugged. Once it is set, it will never be unset as the game has
no code to do so. Immunities and resistances take precedence over weaknesses in
general, so as long as that armor is equipped, there will be no problem.
However, once the character removes the equipment that gave the immunity, they
will retain a permanent strong weakness unless they re-equip the armor.

$22: Magical Defense Multiplier

This is calculated using the following formula:

(wisdom + will) // 32 + (agility // 32)

$23: Magical Defense Evasion

This is calculated using the following formula:

(wisdom + will) // 8 + sum(equipment magic evasion)

This is capped at 99.

$24: Magical Defense Base

This is calculated as the sum of the magical defense of the character’s
equipment.

It is capped at 255.

$25: Elemental Resistance

The character resists these elements and takes reduced damage. This is
calculated by combining any resistances from all equipped equipment.

$26: Elemental Immunity

The character is completely immune to these elements. This is calculated by
combining any immunities from all equipped equipment.

$27: Race Resistance

The character will take reduced damage from attacks by the races encoded in
this byte. Again, this is calculated by combining any race resistance
properties from the character’s equipment.

$28: Physical Defense Multiplier

This is calculated according to the following formula:

\(\left \lfloor \frac{level}{16} \right \rfloor \cdot shields +
\left \lfloor \frac{agility}{8} \right \rfloor\)

$29: Physical Defense Evasion

This is set to the sum of the physical evade values of all the character’s
equipment. An empty armor slot is considered to have an evade of 10. An empty
hand does not confer this bonus.

This value is capped at 99.

$2A: Physical Defense Base

This is calculated as the sum of the physical defense of all the character’s
equipment, plus half their vitality.

This value is capped at 255.

$2B-$2C: Status Immunity

These two bytes determine which statuses the character is immune to. It is
determined by combining the status immunities of all the character’s equipment.

$2D: Critical Rate

This is the rate at which a character does critical hits. It is derived from
the character’s base critical rate as follows:

	No Weapon or Two Weapons

	Set to base_critical_rate

	One Weapon

	base_critical_rate * 2

	Bow+Arrow

	base_critical_rate * 3

This value is mostly capped at 99. Technically, in the single weapon case, it
is only capped if the base value is 128 or greater.

This value and the next value are an exception to the records at $2000 being a
strict superset of the records at $1000. In particular, these values in the
records at $1000 are always the base values. The derived values are only stored
in the in-battle records at $2000.

$2E: Critical Bonus

This is a bonus applied to critical hits. It is derived from the character’s
base critical bonus as follows:

	Bow+Arrow

	base_critical_bonus + arrow_power

	One Weapon

	base_critical_bonus + weapon_power // 2

	Two Weapons or No Weapon

	base_critical_bonus

This value is capped at 255.

Graphics

This chapter discusses the location and formats of the various forms of
graphical data used in the game.

Field Sprites

Field sprites are those used on the field. In particular, they are generally
used to display the player and the NPCs.

Player

The field sprites for party members are made up of several components. First,
the actual graphical data is stored in $300 byte arrays at $1B:8000. Each sheet
is composed of 32 8x8 tiles. The data is stored with 3 bits per pixel.

These sheets are composed into 16 different frames using the OAM flags stored at
$15:C0C4. Each frame has eight bytes of data, where the even bytes are the tile
numbers for the upper left, upper right, lower left and lower right component
tiles, respectively, and the odd bytes are the tile flags for the same tiles.
In the default data, the flags are used to set the horizontal flip bit if
appropriate and to set the priority for each tile to 2.

The coordinates for the four tiles of the player sprite are determined by the
data at $15:C0B4, which consists of four bytes per tile (corresponding to the
full OAM entry). Only the X and Y coordinates are set, with both the flags and
tile bytes being set to zero. Note that the base coordinates for the player
sprite are 112, 109, which is neither centered nor exactly aligned with a tile
boundary. In addition, on the second frame of horizontal movement, the Y
coordinate is reduced further by one.

The palette for each class’s sprite is stored in the array at $15:B2FA. Each
class receives one byte, which determines which of the four player sprite
palettes to use.

The palettes themselves are stored at $0D:8000, which consists of four separate
eight color palettes, with each palette potentially being shared by multiple
characters (only the paladin Cecil palette is unique).

Title Screen

The title screen is a simple static image displayed at the start of the game. Do
note that the title screen in the original Japanese release has some form of
animation. That is not currently documented here.

Tiles

The title screen tile data is stored with 4 bits per pixel at $08:C000. There is
room for 256 tiles, though not all 256 are used in this release.

Tilemap

A standard SNES tilemap is stored in the 2048 bytes starting at $08:E000. The
data is sufficient to render a 256x256 image.

Palette

The eight 16-color palettes used by the screen are stored at $08:E800.

Outdoor Maps

Outdoor maps are composed from a set of 128 16x16 composed tiles, each
created by drawing from a pool of 256 8x8 base tiles.

Base Tiles

The outdoor maps are implemented via mode 7, so each pixel is represented by a
single byte, which directly indexes the palette data in CG-RAM.

Each 8x8 tile uses a single 16-color palette, with the upper four bits of each
pixel in that tile determined by the data in the following table, where each
8x8 tile is one byte (even though only the upper four bits are used):

	Map

	Address

	Overworld

	$14:8600

	Underworld

	$14:8700

	Moon

	$14:8800

The lower four bits of each pixel’s value are loaded from a separate table:

	Map

	Address

	Overworld

	$1D:8000

	Underworld

	$1D:A000

	Moon

	$1D:C000

In this table, two pixels are defined per byte, with the first pixel of each
pair using the lower four bits, and the second pixel using the upper four bits.
These four bits are extracted, shifted to the correct location, and combined
with the previously-specified bits for the tile to determine the final index
into the palette.

The tables for the overworld and underworld are both 8192 bytes each, but the
table for the moon is only 5056 bytes (158 tiles instead of 256).

The palette data itself is standard SNES palette data, loaded from the offset
listed in the following table:

	Map

	Address

	Overworld

	$14:8900

	Underworld

	$14:8980

	Moon

	$14:8A00

Each palette consists of 128 bytes, making up 64 colors.

Composed Tiles

The 16x16 composed tiles are composed from the 8x8 tiles via the data in the
following tables:

	Map

	Address

	Overworld

	$14:8000

	Underworld

	$14:8200

	Moon

	$14:8400

Each 512 byte block is actually composed of four separate 128-byte arrays. The
four arrays, in order, specify the tiles to use in the upper left, upper right,
lower left and lower right segments of the composed tile, in that order. In
other words, the first 128 bytes determine the upper left tile for each of the
128 composed tiles, and so on.

Tilemaps

The tilemaps for the outdoor maps are stored in a slightly compressed form at
the following addresses:

	Map

	Row Offsets

	Compressed Tilemap

	Overworld

	$16:8000

	$16:8480

	Underworld

	$16:8200

	$16:C480

	Moon

	$16:8400

	$16:E180

The row offset data is a series of 16-bit offsets for each row of tiles,
allowing one to index directly to a particular row (which allows the game to
avoid loading all rows into memory at once, as that would be extremely
expensive in terms of memory usage.

The actual compressed tilemap data is a mostly basic run-length encoding scheme.
If the high bit of the value is not set, the value is directly copied to the
tilemap, except potentially for the values of $00, $10, $20 and $30. In those
cases, if the map is the overworld, a four byte sequence will instead be
written. The first byte in the sequence is the specified value. The following
three bytes are equal to $70 plus the value divided by 16 and multiplied by 3
plus either 0, 1 or 2.

If the high bit of the value is set, the low seven bits determine the tile
number, and the following byte is the number of tiles to write minus one. (This
allows a value of $FF, for instance, to encode a full row of 256 tiles.)

All tile numbers refer to the 16x16 composed tiles.

Each row of data in the compressed tilemap is additionally terminated with a
single $FF.

Animation

There are two classes of animated outdoor tiles: ocean tiles and waterfall
tiles. Both of these are animated in similar fashions, with custom code directly
manipulating the tiles as stored in RAM.

For the ocean tiles, every other frame, a row selected based on a frame counter
and the data table at $00:8E8C is rotated to the right, with each pixel moving
once to the right, except for the final pixel, which is rotated back to the far
left. Within the tiles, the ocean tiles make up tiles $80 through $83.

For the waterfall tiles, once per frame, a column selected via the frame counter
and the data table at $00:8E7C is rotated downward, though the process is
repeated so each pixel moves two spots per frame. The waterfall tiles range from
$7A to $7D.

Versions

Over the course of development, several versions of the game were released. In
terms of apparent code progression (but not release date), the different
versions are:

	Japan

	Japan (Rev 1)

	USA

	USA (Rev 1)

	Japan (Easytype)

As such, this document will discuss the changes between versions in this order.
Unless otherwise mentioned, assume a given version retains all changes made in
previous versions (for example, the first USA release is based on the second
Japanese release). The Japan (Easytype) release is something of a special case,
but it will be discussed in more detail later. This list is not necessarily
exhaustive, and some things may have been missed, primarily if they are changes
to data, rather than code.

Japan

This is the originally released version of the game in Japan.

Japan (Rev 1)

This is the second and more common Japanese release.

Battle Scripts

A bug was fixed regarding underworld battle scripts. Previously, the scripts on
the underworld map would be incorrect if the most recently visited dungeon map
was in a certain ID range.

USA

This is the baseline USA release, often referred to as 1.0. Several changes
were made from the Japanese releases. Some minor changes that were related to
the translation process may not be listed here.

Title Screen

The title screen was changed, is no longer animated, and transparency effects
were removed.

Text

Many changes were made to facilitate the translation of the game from Japanese
to English. This is not necessarily an exhaustive list.

Support for the diacritic tile row above text (used for voiced kana) was
largely replaced with a row of blank tiles instead. One of the instances of
this is at $00:B2A8, and leads to a rare bug involving a blank text box when
a fanfare is played by the dialog.

The legend display sequence saw minor coding changes.

Cycling between character sets in the Namingway screen was removed.

Support for dual-tile encoding was added. (The Japanese release had a very
limited DTE for the two-tile ellipsis.)

Display of the first character of item names (the icon) was added to the field
dialogs (including the item selection dialog).

The dialog opcodes handling the end of lines were changed slightly.

Battle Commands

Armor, Shell and Dispel are no longer added to Tellah at Mt.Ordeals.

Sylph

A bug with Sylph that caused it to incorrectly count the number of restored
targets by only ever checking the middle character was fixed.

Some code that superfluously updated the HP of the restored characters was
removed, but in the process, they accidentally added another bug that results
in the spell only costing MP if Rydia is in the middle slot.

Miscellaneous

The ability to customize joypad configuration was removed.

The limited multiplayer support was removed. (The Japanese release allowed
different characters to be controlled by different controllers in battle.)
Which character used which controller was fully configurable.

The active/wait ATB mode selection was removed and wait was made the default.
(However, the code to handle active mode was not removed.)

Outdoor trigger data was moved from bank $15 to bank $19.

When updating an inventory entry in battle (used at least when successfully
sneaking an item), code was removed that previously set the dartable bit of
the item.

The Warp color effect was changed slighty.

The statistics for various monsters were changed.

USA Rev 1

This is the second and seemingly less common USA release, often referred to as
1.1. There were several minor changes made to the game:

Command Delay

The delay for the Kick command was changed from the character’s relative speed
to half their relative speed.

The delay for the “Release” command (the finishing counterpart of Yang’s Build
Up command) was changed from twice his relative speed to his relative speed.
Since the command is unavailable in the USA version, this change is effectively
pointless.

The delay for the finishing part of the Twin command was changed from the
relative speed to half the relative speed.

To summarize, Kick, Build Up, and Twin all had their respective delays halved.

Inventory

When entering battle, code was added to the routine at $03:8929 to reset the
item ID and count in both the field and battle inventories to zero if the item
count is zero.

The primary effect of this change is to prevent the player from being able to
duplicate consumables using the out-of-battle technique that uses the treasure
overflow screen. It does nothing, however, to prevent the more common method
used in battle to duplicate weapons.

Twin Mimic Glitch

Code was added to the routine at $03:A3ED (which processes the menu queue) to
reset the currently active slot to $FF if the current slot being processed is
flagged as the “other” twin. This effectively prevents the mimic glitch as
associated with Twin. Without this fix, during the next time through the loop,
that slot will be processed as if it has queued an action, which will repeat
the previous action.

This fix, however, does nothing to fix the Avenger mimic, which operates on a
similar principle.

Stop

A line of code was removed from the routine at $03:D8EE (which handles the Stop
spell effect) that originally reset the target’s action timer flags to zero. It
is currently unknown what the impact of this change is.

Explode

Code was added to the Explode routine at $03:DD12 to cap the damage at 9999,
even if the actor has more than 9999 HP.

Auto-Actions

A single byte was changed in the routine at $03:AAF2 (which queues automatic
actions) to prevent the auto-actions from being queued if the slot has the
jumping status.

Address Offset Changes

As a result of these changes, several offsets in the files changed. The offset
changes are all confined to bank $03. The table of corresponding ranges is
listed below (this table only documents changes that affect offsets–sections
with only byte-for-byte changes are listed as similar):

	USA

	USA Rev 1

	Classification

	Delta

	$03:8000 - $03:8A85

	$03:8000 - $03:8A85

	Similar

	0 ($00)

	N/A

	$03:8A86 - $03:8A8F

	Added

	N/A

	$03:8A86 - $03:A4A7

	$03:8A90 - $03:A4B1

	Similar

	10 ($0A)

	$03:A4A8 - $03:A4A9

	$03:A4B2 - $03:A4B9

	Changed

	N/A

	$03:A4AA - $03:D906

	$03:A4BA - $03:D916

	Similar

	16 ($10)

	$03:D907 - $03:D909

	N/A

	Removed

	N/A

	$03:D90A - $03:DD0E

	$03:D917 - $03:DD1B

	Similar

	13 ($0D)

	N/A

	$03:DD1C - $03:DD23

	Added

	N/A

	$03:DD0F - $03:F26A

	$03:DD24 - $03:F27F

	Similar

	21 ($15)

	$03:F26B - $03:F27F

	N/A

	Removed ($FF)

	N/A

	$03:F280 - $03:FFFF

	$03:F280 - $03:FFFF

	Similar

	0 ($00)

Japan (Easytype)

This was the final version of the game released in Japan. While it was
seemingly released before any of the USA versions, its codebase is clearly
further along than even USA (Rev 1). You can generally assume that it is the
same as USA (Rev 1), except regarding any text code (which is still based on
the latest Japanese release), or other changes listed below.

NOTE: Some of the below code changes have not been fully analyzed for their
implications in fixing bugs.

While the script and other text was based on the Japanese release, it was
modified and simplified, presumably to be more accessible to the intended
younger audience.

In the save/load menu, the check for the player pressing the B button occurs
earlier in the loop.

A wait for vblank call was removed from the Namingway character selection
screen.

Some dead code regarding custom joypad support was removed.

The item exchange screen added additional code to zero out the ID number of an
item in the spoils inventory to avoid leaving a glitched entry.

Additional code was added at the end of battle to copy hand inventory back to
the character records. The original version of the copying routine would zero
out the item ID if the count was zero. The Easytype version was modified to
instead zero out the count if the item ID was zero. This effectively fixes the
item duplication glitch by preventing the player from leaving the battle with
1 or 255 nothings (item ID 0) in their hand.

ROM Map

This chapter provides a detailed map of the ROM layout, organized by bank.

Bank $00

	Address

	File Offset

	Type

	Name

	Description

	$00:8000.8301

	$000000.0301

	Code

	main

	First entry point for the game.

Bank $14

	Address

	File Offset

	Type

	Name

	Description

	$14:8000.81FF

	$0A0000.0A01FF

	Data

	outdoor_tile_composition_data

	Tile composition data for the overworld.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Final Fantasy IV Technical Documentation

 		
 Introduction

 		
 Conventions

 		
 Numbers

 		
 Addresses

 		
 Data Structures

 		
 Events

 		
 $FA: Play Song

 		
 $FE: Warp to Map

 		
 $FF: End Event

 		
 Character Records

 		
 $00: Character Byte 1

 		
 $01: Character Byte 2

 		
 $02: Level

 		
 $03-$06: Status

 		
 $07-$08: Current HP

 		
 $09-$0A: Maximum HP

 		
 $0B-$0C: Current MP

 		
 $0D-$0E: Maximum MP

 		
 $0F: Base Strength

 		
 $10: Base Agility

 		
 $11: Base Vitality

 		
 $12: Base Wisdom

 		
 $13: Base Will

 		
 $14: Strength

 		
 $15: Agility

 		
 $16: Vitality

 		
 $17: Wisdom

 		
 $18: Will

 		
 $19: Elemental Attack

 		
 $1A: Racial Attack

 		
 $1B: Physical Attack Multiplier

 		
 $1C: Physical Attack Accuracy

 		
 $1D: Physical Attack Base

 		
 $1E-$1F: Physical Attack Status

 		
 $20: Elemental Weakness

 		
 $21: Elemental Strong Weakness

 		
 $22: Magical Defense Multiplier

 		
 $23: Magical Defense Evasion

 		
 $24: Magical Defense Base

 		
 $25: Elemental Resistance

 		
 $26: Elemental Immunity

 		
 $27: Race Resistance

 		
 $28: Physical Defense Multiplier

 		
 $29: Physical Defense Evasion

 		
 $2A: Physical Defense Base

 		
 $2B-$2C: Status Immunity

 		
 $2D: Critical Rate

 		
 $2E: Critical Bonus

 		
 Graphics

 		
 Field Sprites

 		
 Player

 		
 Title Screen

 		
 Tiles

 		
 Tilemap

 		
 Palette

 		
 Outdoor Maps

 		
 Base Tiles

 		
 Composed Tiles

 		
 Tilemaps

 		
 Animation

 		
 Versions

 		
 Japan

 		
 Japan (Rev 1)

 		
 Battle Scripts

 		
 USA

 		
 Title Screen

 		
 Text

 		
 Battle Commands

 		
 Sylph

 		
 Miscellaneous

 		
 USA Rev 1

 		
 Command Delay

 		
 Inventory

 		
 Twin Mimic Glitch

 		
 Stop

 		
 Explode

 		
 Auto-Actions

 		
 Address Offset Changes

 		
 Japan (Easytype)

 		
 ROM Map

 		
 Bank $00

 		
 Bank $14

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

